If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2-21x+1=0
a = 20; b = -21; c = +1;
Δ = b2-4ac
Δ = -212-4·20·1
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-19}{2*20}=\frac{2}{40} =1/20 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+19}{2*20}=\frac{40}{40} =1 $
| 9-8b+6b=9+6b-8b | | 36^x-6^(3-2x)=30 | | 1+20=-3(7x-7) | | 23-1x=+13 | | 1+20=-3(7x-7 | | 61y=30(2y+1) | | -2(n-7)=2n | | 0=y^2-4y-4 | | 7x+17=9x+27 | | -8n+6n=2 | | 14-1/5(j-10)=2/5(25-j) | | 11X+15+12x2=0 | | 0.6x+4.4=5 | | 3x^2+5=7 | | n-1.4=-6.0 | | -.04x=-176 | | 3x-81+.5x=360 | | 1-2x-13+x=x+16 | | .10x+0.45(50)=27.5 | | -.02x=-140 | | 3(x-7)+5=-16 | | 5+1/4x=3 | | 90-9x=50-13x | | 5/6(9-x/2)=1 | | (2x+7)/x-2=7/(9x+2) | | -6=6(6-2x) | | 8.8b-2.9b=B | | 8(r-8)=2r+8 | | 2x+7x | | 10(3x2−13x)=−40 | | (z-2)^3-2=0 | | -2x+x=16-1-13 |